High resolution spectroscopy of Ar-CH₄ and Kr-CH₄

in the 7 μ region ($j = 1 \leftarrow 0$ transition)

I. Pak^{a,b}, D. A. Roth^a, M. Hepp^a, G. Winnewisser^a, D. Scouteris^c, B. J. Howard^c, and K. M. T. Yamada^d

- ^a I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937, Köln, Germany
- ^b Institute of Spectroscopy, Russian Academy of Sciences,
- 142092, Troitsk, Moscow Region, Russia
- ^c Physical and Theoretical Chemistry Laboratory, Oxford University,
- South Park Road, Oxford QX1 3QZ, United Kingdom ^d National Institute for Advanced Interdisciplinary Research, Higashi 1-1-4, Tsukuba, Ibaraki 305, Japan

Z. Naturforsch. **53 a,** 725–732 (1998); received May 25, 1998

Diode laser spectra of the rare gas – spherical top van der Waals complexes Ar-CH₄ and Kr-CH₄ were measured in the wavelength region near 1310 cm⁻¹ and assigned. The most prominent lines of both complexes exhibit three dense but well resolved P₀, Q₀, and P₀ branches, correlated to the R(0) transition of the triply degenerate bending vibration ι_4 of methane, CH₄. A model Hamiltonian based on Coriolis coupled states was applied for the assignment, analysis and fitting of the spectra to within the experimental accuracy of ≈ 15 MHz. The rotational B constants of the upper and lower states determined from the three allowed branches appeared to be strongly correlated. The precision in the determination of the rotational B constants of the two complexes was substantially increased by additional recording of several weak transitions in the nearly forbidden Po and ^RR₀ branches, which were fitted together with the allowed transitions. The separation between the rare gas atom and the methane molecule in the ground vibrational state was determined to be 3.999 Å and 4.094 Å for Ar-CH₄ and Kr-CH₄, respectively. The measured small values of the splitting between the K=0 and the $K=\pm 1$ levels in the vibrationally excited state (0.39 cm⁻¹ and 0.67 cm⁻¹ for Ar-CH₄ and Kr-CH₄, respectively), which characterizes the anisotropy of the intermolecular potential, indicated that Kr-CH₄ and Ar-CH₄ together with Ne-SiH₄ represent examples close to the free rotor limit, where the spherical top CH is almost free to rotate within the complex. In comparison, the previously analyzed Ar-SiH van der Waals molecule is closer to the hindered rotor limit.

Reprint requests to Prof. G. W.; E-mail: winnewisser@ph1.uni-koeln.de